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CCS CONCEPTS
• Networks→ Protocol correctness; Mobile and wireless secu-
rity; • Security and privacy→ Logic and verification.
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1 INTRODUCTION
Towards a secure cellular network, researchers are spending efforts
to manually identify vulnerabilities, e.g., [3] (here we call this ap-
proach as human investigation). Such a practice demands both time
and patience. It is only suitable to be applied on a few procedures
of large cellular network protocols. Dynamic testing [2], on the
other hand, invokes test cases to check if the actual behavior of the
network meets security criteria. It identifies vulnerabilities during
execution. This approach, however, is depending on the quality of
input test cases. As a result, its completeness can never be proved.

The use of formal methods brings a systematic and solid ap-
proach to cellular network security research [1, 4]. Nevertheless,
researchers have encountered a common and critical problem: spec-
ification. Protocols of cellular network are documented in natural
languages. Lots of human efforts are required to convert protocols
into formal models. Such manual-crafted specifications are error-
prone and only capable of describing small pieces of protocols.

Being different from existing methods (see Table 1), CellScope
automatically extracts formal models of cellular network protocols
from software implementations. By applying improved counter-
example-guided abstraction refinement (CEGAR), CellScope effi-
ciently inspects cellular network protocols in large scale.

Three major challenges are posed to our CellScope framework.
First, there are multiple software entities run independently in a
cellular network. Therefore, we setup software message channels to
deliver plainmessages. Second, the state space in an implementation
of cellular network is too large for a model checker. For instance, a
prevailing open source implementation of LTE, OpenAirInterface
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Table 1: Existing methods vs. CellScope.
Methodology Generalizable Trustworthy Complete Automated
Human investigation #  # #
Dynamic testing G# G# G#  
Manual specification G# G# G# G#
CellScope  G#   
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Figure 1: The architecture of CellScope.

(OAI), hasmore than onemillion lines of code.We abstract low-layer
protocols and build straightforward message channels between
high-layer protocols. Program slicing is then applied to pruning
program states according to used properties. Third, general purpose
software model checkers cannot fully exploit information from
specification. We figure out ways to exchange information between
the frontend and the backend, such that the verification process
can be accelerated.

In summary, we present our specification and verification frame-
work, CellScope (shown in Figure 1), for exploiting design flaws
in cellular network protocols. CellScope consists two major com-
ponents: a parser frontend and a verification backend. The parser
frontend automatically translates LTE source code to formal models
and instruments channel and adversary models into LTEmodels. By
slicing the model depending on a property, CellScope performs the
CEGAR-based verification backend on it. Once a counterexample
is identified, it will be validated on a real OAI testbed platform.

2 AUTOMATED SPECIFICATION
A cellular network has three major entities: user equipment (UE),
base station (eNB), and core network (CN). We model each entity
as a control flow automata (CFA). A CFA consists of (1) integer
variables, (2) control locations with start and exit points, and (3)
directed edges between locations. It is used in verification backend
as the formal specification. Leveraging a program-understanding
tool, CodeSurfer, along with code compilers, CellScope extracts
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CFGs from source code. Then, it uses our implemented CFG parser
to translate CFGs to CFAs.

2.1 Model Construction
Entities in the cellular network run independently. To facilitate
model checking, we design a software message channel for message
exchange between entities and for fusing the entities together. We
focus on detailed procedures in protocols above the link layer (e.g.,
NAS, RRC, and S1AP), while we abstract the protocol stack below
that layer. With such a channel, CellScope can construct a complete
yet simplified model for the whole cellular network.

As shown in Figure 2, our message channel model has two func-
tionalities. First, the channel is built to simplify message exchange.
Messages are encoded and exchanged between event handlers either
within an entity (through multi-thread interface calls) or between
entities (through physical signals). To facilitate model checking, the
channel caches plain text message instead of bitstreams generated
by one handler. The message is then translated as an input to the
target handlers. Second, the channel is used to express adversarial
behavior. We consider a Dolev-Yao-style adversary in the channel
model with the following capabilities: it can drop ormodifymessage
in the channel or impersonate one legitimate participant to inject
messages into the channel. These capabilities are implemented with
operations on message caches and message exchanges in channels.

2.2 Property-driven Slicing
CellScope focuses on interactions among three major entities in
RRC and NAS layer protocols. In that sense, it sets the slicing
criteria to be a set of program instructions that send and receive
messages. To reduce the sizes of the models, we design a property-
driven slicing approach. Our approach slices models guided by each
individual property to be checked by our verification backend.

Depending on the specific property, the slicing criteria used by
CellScope may include configurations of entities, messages appear
in protocols, and delivery instructions in between protocols and
entities. Starting from each slicing criteria, CellScope performs
backward slicing and tracks both intra-process and inter-process, as
well as inter-entity. Themore precise the slicing is, the more states it
can prune statically. Nevertheless, to avoid false positives in model
checking, CellScope performs an over-approximated slicing instead
of precise point-to analysis. Avoiding the very expensive point-to
analysis makes it possible for CellScope to prune the system model
for each individual property.

3 FORMAL VERIFICATION
A major challenge in formal verification is the scalability problem:
the model checker may not be able to terminate when the model
gets large. This problem is more severe, as our model is extracted
from a largest software. To address this challenge, we propose two
new techniques: prioritized counterexample guided abstraction
refinement (P-CEGAR) and model decomposition with weakest
precondition.

3.1 P-CEGAR
As the original concrete model could be too complex to handle,
in CEGAR, a sound yet incomplete abstract model is built. If the
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Figure 2: Message channel model.

abstract model is safe, the concrete model should also be safe. How-
ever, when a counterexample is found on the abstract model, it is
either feasible on the concrete model, or a spurious example due
to a high abstraction level. Therefore, CEGAR further refines the
abstract model by generating new predicates to rule out the current
spurious example. A number of heuristics have designed to gener-
ate predicates. Unfortunately, because the specification is usually
written by humans, none of the heuristics are using any knowledge
in addition to the explicit model itself.

As a united platform, CellScope is able to share knowledge in
between its specification and verification parts. Particularly, when
constructing CFAs, CellScope distinguishes protocol related variables
from program control related variables. In addition, dummy adver-
sary variables are recorded by CellScope when building message
channels. An abstract model consists of these variables can largely
capture the behavior of the underlying protocol yet remains small
in size. Therefore, after finding the set of contradicting predicates,
our model checker prioritizes more essential variables over other
variables. In this way, CellScope captures the essence of the con-
crete model and selects new predicates more wisely. Consequently,
the model checking will terminate faster.

3.2 Model Decomposition with Weakest
Precondition

The execution time of verification grows fast as the size of the
model grows. Nevertheless, formal models are always entangled,
making decomposing them into separate ones infeasible. Cellular
network models, on the other hand, can be easier decomposed into
protocol layers. Meanwhile, a single layer can further be divided
into function modules. The interactions in between are limited to a
few messages.

To verify a safety property, CellScope starts from verifying the
function module in which the violation to the property can oc-
cur. Then, CellScope proceed by constructing the set of weakest
preconditions on the interface between modules, from which the
violation can be reached. In the same way it propagates backward,
until reaches the initial module.
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